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Solving Discounted Markov Decision Processes by Using Prioritized Approach 

Solución de Procesos de Decisión de Markov Descontados Usando Enfoque Priorizado 

Abstract. The problem of solving large Markov decision processes accurately and quickly 
is a challenging one. For the special case of additive Markov decision processes fast 
solution algorithms exist. For instance, improved prioritized value iteration and improved 
prioritized sweeping are two fast algorithms for the solution of additive Markov decision 
processes. Here, the possibility of transforming discounted Markov decision processes into 
additive Markov decision processes for solving them by means of fast algorithms such as 
improved prioritized value iteration and improved prioritized sweeping is explored.

Resumen. El problema de la solución de procesos de decisión de Markov de gran talla de 
forma exacta y rápida es un gran reto. Para el caso especial de procesos de decisión de  
Markov aditivos ya existen algoritmos de solución rápidos. Por ejemplo, iteración de valor 
priorizado mejorado y barrido priorizado mejorado son dos algoritmos rápidos para 
resolver procesos de decisión de Markov aditivos. Aquí, se explora la posibilidad de 
transformar cualquier proceso de decisión de Markov descontado en procesos de decisión 
de Markov aditivos para que puedan resolverse por medio de algoritmos rápidos tales que 
iteración de valor priorizado mejorado y barrido priorizado mejorado. 

Keywords. Discounted Markov Decision Processes, Additive Markov Decision Processes, 
Prioritization, transformation of Markov Decision Processes. 
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1. Introduction 

some expected utility. Most approaches for finding such policies are based on decision-
theoretic planning (Boutilier, 1999) (Bellman, 1954) (Puterman, 1994). Among these, 
Markov decision processes (MDP) constitute a mathematical framework for modeling and 
deriving optimal policies. Value iteration is a dynamic programming algorithm (Bellman, 
1957) for solving MDP, but it is usually not considered because of its slow convergence 
(Littman, 1995). This is because its speed of convergence depends strongly on the order of 
the computations (or backups).  

The slow convergence of value iteration for solving large MDP is usually tackled up by 
using one of two approaches (Dai, 2007a): heuristic search (Hansen, 2001) (Bhuma, 2003) 
(Bonet, 2003a,b, 2006), or prioritization (Moore, 1993) (Ferguson, 2004) (Dai, 2007b) 
(Wingate, 2005). In the first case, heuristic search combined with dynamic programming 
are used to reduce the number of relevant states as well as the number of expansions of the 
search. Hansen et al. (Hansen, 2001) considered only part of the state space by constructing 
a partial solution graph, searching implicitly from the initial state towards the goal state, 
and expanding the most promising branch of an MDP according to a heuristic function. 
Bhuma et al. (Bhuma, 2003) extended this approach by using a bidirectional heuristic 
search algorithm. Bonet et al. (Bonet, 2003a,b) proposed two other heuristic algorithms that 
use a clever labeling technique to mark irrelevant states. Later on, they explored depth-first 
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search for the solution of MDP (Bonet, 2006). In the second case, prioritization methods 
are based on the observation that, in each iteration, the value function usually changes only 
for a reduced set of states. So, they prioritize each backup in order to reduce the number of 
evaluations (Moore, 1993) (Dai, 2007b). Ferguson et al. (Ferguson, 2004) proposed another 
prioritization method called focused dynamic programming, where priorities are calculated 
in a different way than in prioritized sweeping. Dai et al. (Dai, 2007a) extended Bhuma et 
al.  idea (Bhuma, 2003) by using concurrently different starting points. In addition, they 
also proposed (Dai, 2007b) a topological value iteration algorithm, which groups states that 
are mutually and causally related together in a meta-state for the case of strongly connected 
states (or MDP with cyclic graphs). Likewise, other approaches such as topological sorting 
(Wingate, 2005) and shortest path methods (McMahan, 2005a,b) have been proposed. On 
the first hand, topological sorting algorithms can be used to find good backup orderings but 
their computational cost is usually high (Wingate, 2005). On the other hand, shortest path 
methods have been applied to the solution of MDP with some success (McMahan, 
2005a,b).  

In this paper, the problem of finding an optimal policy of discounted MDPs accurately 
and quickly is considered. It has been found that any MDP can be transformed into a goal-
based MDP and viceversa (Barry, 2009). This opens up the possibility of solving 
discounted MDPs by using the fastest existing algorithms for solving additive MDPs. Thus, 
different equivalences of MDPs in terms of additive MDPs that can be solved by using fast 
algorithms based on prioritization are considered.  
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This paper is organized as follows: first a brief introduction to MDPs as well as solution 
methods is presented, then, different equivalences of MDPs are studied and finally 
experimental results and conclusions are presented. 

I.1 Markov Decision Processes 

Markov decision processes (MDP) provide a mathematical framework for modeling 
sequential decision problems in uncertain dynamic environments (Bellman, 1957) 
(Puterman, 2005). 

Formally, an MDP is a four-tuple , where  is a finite set of states,  is a 
finite set of actions,  is the transition probability function, and  is 
the reward function. A policy (or strategy)  is a rule that specifies which action should 
be taken in each state. The core problem of MDP is to find the optimal policy that 
maximizes the expected total (or average) reward (Puterman, 2005). The value function is 
the expected reward, starting at state  and following policy , that is given by: 

where  is the discount factor, which may be used for decreasing exponentially 
future rewards implying that future rewards have less value than current rewards (Russell, 
2004). For the case of additive MDP ( ) the expected total reward may be infinite. 
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Thus, absorbing terminal states are necessary in additive MDP to guarantee that the 
expected total reward is finite. 

Let  be the optimal value function of any state given by:

The optimal value function satisfies the Bellman equation (Bellman, 1954) (Puterman, 
2005) that is given by: 

Value iteration, policy iteration and linear programming are three of the most well-
known techniques for finding the optimal value function  and the optimal policy  
for infinite horizon problems (Chang, 2007). However, policy iteration and linear 
programming are computationally expensive techniques when dealing with problems with 
large state spaces because they both require solving a linear system (of equations) of the 
same size as the state space. In contrast, value iteration avoids this problem by using a 
recursive approach that it is typically used in dynamic programming (Chang, 2007).  

Starting from an initial value function, value iteration applies successive updates to the 
value function for each  by using: 
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Let  be the sequence of value functions obtained by value iteration. 
Then, it can be shown that every value function obtained by value iteration satisfies 

. Thus, from the Banach fixed-point theorem, it can be inferred that 
value iteration converges to the optimal value function . One advantage of value 
iteration comes from the fact that the value functions obtained can be used as bounds for 
the optimal value function (Tijms, 2003).

The convergence of value iteration may be quite slow for  close to one. For this reason, 
several improvements to value iteration have been proposed (Puterman, 2005). For 
instance, common techniques may improve convergence rate, reduce the time taken per 
iteration and/or use better stopping criteria. 

One of the easiest ways to improve convergence rate is to update the value functions as 
soon as they become available (also known as asynchronous updates). For instance, Gauss-
Seidel value iteration uses the following update equation (Puterman, 2005): 

It is well known that policy iteration converges faster than value iteration does, but it is 
more expensive per. A combined approach (modified policy iteration) can exploit the 
advantages of both. Thus, modified policy iteration uses a partial policy evaluation step 
based on value iteration (Puterman, 2005).
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Another way of improving the convergence rate as well as the iteration time is using 
prioritization and partitioning (Wingate, 2005). Generally, prioritization methods are based 
on the observation that, at each iteration, the value function usually changes only for a 
reduced set of states. Thus, by restricting the computation to only those states, a reduction 
of the iteration time is expected. It has been outlined that for acyclic problems the ordering 
of the states, where the transition matrix becomes triangular may result in a significant 
reduction in time (Wingate, 2005).  

II. Materials and Methods 

II.1 Prioritized Sweeping 

Although value iteration is a powerful algorithm for solving MDP, it has some potential 
problems. First, some backups are useless because not all states change in a given iteration 
(Dai, 2007b). Second, backups are not performed in an optimal order. Priority-based 
methods such as prioritized sweeping (PS) (Moore, 1993) avoid these problems by ordering 
and performing backups so as to perform the least number of backups (Dai, 2007b). To be 
more precise, PS maintains a priority queue for ordering backups intelligently. This priority 
queue is updated as the algorithm sweeps through the state space. PS can begin by inserting 
the goal state in the priority queue when it is used in an offline dynamic programming 
algorithm, such as value iteration. At each step, PS pops a state s  from the queue with the 
highest priority and performs a Bellman backup of that state. If the Bellman residual of 
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state s  is greater than some threshold value  or if s  the goal state, then PS is inserts its
predecessors into the queue according to their priority (Dai, 2007b). Unfortunately, the use 
of a priority queue for all the states of the model may result in an excessive overhead for 
real-world problems (Wingate, 2005), especially for cyclic MDP. 

Focused dynamic programming (Ferguson, 2004) is another variant of prioritized 
sweeping that exploits the knowledge of the start state to focus its computation on states 
that are reachable from that state. To do this, focused dynamic programming uses a priority 
metric that it is defined using two heuristic functions: an admissible estimate of the 
expected cost for reaching the current state from the start state and an estimate of the 
expected cost for reaching the goal state from the current state. In contrast to other forms of 
prioritized sweeping, this approach removes the state with the lowest priority value from 
the priority queue, instead of removing the state with the highest priority value, since it is 
interested in states through which the shortest path passes.

Dibangoye et al. (Dibangoye, 2008) proposed an improved topological value iteration 
algorithm (iTVI) which uses a static backup order. Instead of minimizing the number of 
backups per iteration or eliminating useless updates, this algorithm attempts to minimize 
the number of iterations by using a good backup order. First, depth-first-search is used to 
collect all reachable states from the start state. Next, breadth-first-search is used to build a 
metric d(s), which is defined as the distance from the start state to state s. A static backup 
order is built from the resulting metric in such a way that states that are closer to the start 
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state be updated first. The algorithm is guaranteed to converge to the optimal value function 
because it updates all states recursively in the same way as value iteration does. 

Meuleau et al. (Meuleau, 2006) solved stochastic over-subscription planning problems 
(SOSP) by means of a two-level hierarchical model. They exploit this hierarchy by solving 
a number of smaller factored MDP. Shani et al. (Shani, 2008) extended the use 
prioritization to partially observable MDP. In this case, backups are prioritized by using the 
Bellman error as a priority metric and no priority queue is used. 

In contrast with the above methods, it is worth to mention a prioritization method that 
does not require a priority queue (Dai, 2007c), instead, it uses a FIFO (first input, first 
output) queue if the backwards traversal of the policy graph is breadth-first (forwards value 
iteration), or a LIFO (last input, first output) queue if the backwards traversal is depth-first 
(backwards value iteration). In both cases, unnecessary backups can be avoided by using a 
labeling technique (Bonet, 2003a,b) and the decomposition of the state space into a number 
of strongly connected components. Unfortunately, it has been shown that the backup order 
induced by these algorithms is not optimal (Dai, 2007c).  

Since the performance of PS depends on the priority metric that it is used to order states 
in the priority queue, several researchers have investigated alternative priority metrics. For 
instance, IPS (McMahan, 2005a,b) uses a combination of a value change metric, and an 
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upper bound metric. In fact, it has been shown that IPS may outperform other prioritized 
sweeping algorithms (Dai, 2007a,b). 

-source 
shortest path problem in a weighted acyclic graph. This algorithm is a special case of the 
A* algorithm but unlike t

nodes and thus solves the one-to-all shortest path problem. In fact it has been shown that 
Dijkstr
programming equation for the shortest path problem (Sniedovich, 2006, 2010) and 

ithm is that it processes states according to a greedy best first rule.  

One of the advantages of value iteration and its variants is that their convergence to the 
optimal value function is guaranteed for the case of discounted MDP and for the case of 
additive MDP with absorbing states (Bertsekas, 1995) (Li, 2009). This is because 
successive application of the Bellman equation has guaranteed convergence to the optimal 
value function.  

II.2 Proposed Method 
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As we have already mentioned, any discounted MDP can be transformed into an additive 
MDP (Barry, 2009). As a matter of fact, elimination of the discount factor  from the 
Bellman equation is an equivalence preserving transformation.  

Given an MDP ( ) with discount factor  and no absorbing states, it can be transformed 
into an additive MDP ( ) by using the following procedure: 

 Add to the set of states  of  a single absorbing state  with reward 0. Let  
be the set of states of the transformed MDP. 

 For each , set . Set . 

Other kinds of equivalence preserving transformations are possible. For instance, an MDP 
can be transformed by adding a constant to the reward function. In this way, for instance, it 
is possible to transform any positive MDP into a negative MDP and vice versa. 

Given a discounted MDP  with reward function , and  be the MDP resulting 
from adding the constant  to the reward function. Then 

Next, by defining , the Bellman equation of the resulting MDP is: 
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Thus, the value function of the MDP resulting from adding a constant to the reward 
function is: 

. 

In the previous approach an MDP is transformed into an additive MDP by adding a 
single goal state connected to all states. The advantage is that the resulting MDP can be 
found by using methods such as IPS or IPVI.  

The previous approach can be improved by adding more than one goal state. In this case, it 
is proposed that only certain states must be connected to an absorbing state and that there 
must be several goal states. The reason is that, for the goal-based MDP obtained by adding 
a single goal state, most prioritized algorithms such as IPS must update at the beginning all 
predecessors of the goal state. That is, IPS and IPVI must update at the beginning all the 
whole set of states , which incurs in a high computational overhead mainly because of the
large number queue operations (insertions and priority changes). 

V Congreso Internacional de la Ciencia de Sistemas

44



Figure 1. Transformation of a discounted MDP into an additive MDP. Left is original 
MDP, right is transformed MDP. A new action with transition probability is added 
to each state and all other transition probabilities are multiplied by the discount factor.

II.3 Experiment Description 

For the validation of the proposed algorithm, discounted MDPs with different numbers of 
states, actions, and reachable states were generated. Next, each generated MDP was 
transformed into an additive MDP by adding an absorbing state and connecting it to all 
states. 

All the experiments were performed on workstation with 4GB RAM running Windows 7. 
All the tested algorithms were implemented using the Java language. The initial and 
maximum size of the stack of the Java virtual machine was set to 1024  MB and 1536  MB, 
respectively. For all the experiments, we set  and . Obviously, the 
transformed MDPs had no discount factor. 
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III. Results 

 

We tested our approach by solving the additive MDPs resulting from different 
transformations: transformation by adding a single goal state. In addition, we compared that 
approach with two methods: asynchronous value iteration with sparse coding and improved 
prioritized value iteration. 

Figure 2. Solution time as a function of the number of states for dense MDPs. 

Figure 2 shows the solution time for the case of difficult dense MDPs with 4 actions 
and different numbers of states. As we had expected, asynchronous value iteration with 
sparse coding was by far the fastest algorithm.
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IV. Discussion 

In this paper a new approach for solving discounted MDPs by transforming them to 
additive MDPs and using fast algorithms such as improved prioritized sweeping and 
improved prioritized value iteration has been studied and tested.  

We compared the performance of the method using asynchronous value iteration with 
sparse coding and improved prioritized value iteration. For the case of dense MDPs, the 
performance of asynchronous value iteration with sparse coding with sparse coding was the 
fastest one. As we had expected, improved prioritized value iteration incurred in a large 
overhead caused by the large number of queue operations. Further work will focus on the 
evaluation of the second method proposed which transforms discounted MDPs by using 
more than one absorbing state. 
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